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Abstract Origin of polarization sensitivity of the silicon cross-slot waveguide (SCSW) is analyzed. The effective
refractive indices as well as the single-mode-operation conditions of SCSWs for different polarization states are
calculated. A single-mode SCSW can be polarization-insensitive if its structure is designed dedicated. A polarization-
independent micro-ring resonator with 3.7 μm radius based on a polarization-insensitive SCSW is proposed and
simulated. The polarization-independent working bandwidth of the micro-ring resonator is about 64 nm, and the
free spectral range is about 35 nm.
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基于硅十字缝隙波导结构的偏振无关微环型谐振腔
的设计与模拟
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摘要 分析了硅基十字缝隙波导(SCSW)偏振敏感的原因，计算了不同偏振态下 SCSW 的有效折射率和单模工作条

件，分析发现通过合理的设计单模 SCSW 的结构，可以达到偏振不敏感。提出并模拟了基于 SCSW 的具有偏振无关

特性的微环形谐振腔。该谐振腔的半径为 3.7 μm，偏振无关的工作区域大约 64 nm，自由光谱范围大约 35 nm。
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1 Introduction
The size reduction of integrated optical waveguide devices is one of the main concerns in photonics. The

slot waveguide structure[1-2] is proposed to satisfy this demand. Since the polarization state of the optical signal
transmitted in fiber is random, the spectral response of the optical devices used in fiber communication
systems must be polarization-independent to make the systems stable. Several polarization-insensitive
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schemes for different integrated optical devices have been proposed[3-7]. The structure of slot waveguide is
quite asymmetric, which makes it polarization-sensitive. To solve this problem, cross-slot waveguide is
introduced[8-9]. Several polarization-independent optical devices based on cross-slot waveguide structures
have been proposed and fabricated[10-15].

The micro-ring resonator (MRR) based on high-index-contrast waveguide is one of the most attractive
structures, which can construct various optical devices[16-18]. To the best of our knowledge, the polarization-
independent MRR based on silicon cross-slot waveguide (SCSW) has not yet been proposed. In this paper,
we report the design and simulation of a laterally coupled polarization-independent MRR based on SCSW.
The fabrication of the MRR based on SCSW will be discussed in our following paper.

2 Design and simulation
2.1 Design of cross-slot waveguide

The polarization characteristic of integrated optical device heavily depends on the waveguide
structure[19]. A single- mode SCSW with polarization- insensitive characteristic is required to design a
polarization- independent MRR. The cross- section of a cross- slot waveguide based on silicon- on-
insulator (SOI) is shown in figure 1. It consists of four rails of silicon separated by a slot of SiO2. The
SCSW is covered by SiO2.

Fig.1 Cross-section of a cross-slot waveguide based on SOI

As shown in figure 1, there are four variables in this structure: rw is the width of one rail, rh is the

height of one rail, sh is the width of the slot between two rails in horizontal, and sv is the height of the

slot between two rails in vertical. To simplify the design of SCSW, the shapes of four rails are identical,
and sh is set equal to sv. shv is used to denote both sh and sv .

Finite element method [20] is used to calculate the single-mode conditions and the effective refractive
indices of different SCSWs for both TE and TM mode. At 1550 nm, the refractive index is 3.50 for Si and 1.44
for SiO2. During the calculation process, rw varies from 100 nm to 300 nm, and shv is set to be 50 nm and

100 nm respectively. Throughout this paper, the calculation grid sizes of three dimensions are all 10 nm. The
single-mode-operation regions of SCSWs for both TE and TM mode are shown in figure 2.

Fig.2 Single-mode-operation regions of SCSWs with different structural parameters for TE and TM mode.

(a) shv is 50 nm; (b) shv is 100 nm
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The effective refractive indices of SCSWs with different structural parameters for both TE and TM
mode are shown in figure 3.

Fig.3 Effective refractive indices of SCSWs with different structural parameters for TE and TM mode.
(a) shv equals to 50 nm; (b) shv equals to 100 nm

There are several intersections labeled by circles in figure 3, which mean the effective refractive indices
for two polarization states are equal and the SCSWs with these structures are polarization-insensitive. We
prefer shv to be 100 nm which can make the free spectral range (FSR) of the MRR larger. rw and rh are chosen

to be 150 nm and 160 nm respectively, which can make the SCSW polarization-insensitive and satisfy the
single-mode condition simultaneously. The effective refractive index is depend on the distribution of the
optical field, which is the quantity of the light that passes through each point. The distributions of the optical
field of different waveguide structures for TE mode are shown in figure 4. For a given polarization state, with
the enlargement of shv , more optical field distributes in the slot with a low refractive index, which decreases

the effective refractive indices. In contrast, with the enlargement of rw or rh , the optical field distributes in

the four rails with high refractive index, which increases the effective refractive indices.

Fig.4 Distribution of the optical field for TE mode. (a) shv =50 nm, rh =150 nm, rw =150 nm;
(b) shv =100 nm, rh =150 nm, rw =150 nm; (c) shv =100 nm, rh =150 nm, rw =300 nm

2.2 Design and simulation of micro-ring resonator
The top view of a MRR based on SCSW is shown in figure 5 (a). The MRR consists of a ring SCSW and two

straight SCSWs. To cover the C-band which is used in fiber communication systems and ranging from
1530 nm to 1565 nm, the radius of the ring is set to be 3.7 μm. The cross-section of the coupling region is
shown in figure 5 (b). The structure of the straight SCSW has been mentioned above. The structure of the
ring SCSW is different. As shown in figure 5 (a), the four rails of the ring SCSW can be separated into two
groups named inner rails and outer rails, each consists of two rails. To decrease the bending loss in the

MRR[21] , the width of the inner rails named rw_i should be slightly larger than that of the outer rails named

rw_o . According to the analysis in reference 20, rw_i and rw_o are set to be 160 nm and 140 nm respectively.

The coupling coefficients of the MRR at 1550 nm for different polarization states with different gaps are
calculated with three-dimensional finite-difference time-domain (FDTD) method[22-23] and the results are
shown in figure 6. For a given gap, the coupling coefficients are different for TE and TM mode, which may
make the filtering response of the MRR for TE and TM mode different. Scattering-matrix method[23- 25]
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Fig.5 Structure of the MRR based on SCSW. (a) Top view of the MRR; (b) cross-section of the coupling region

is used to analyze the filtering performance of the MRR. According to the analysis in reference[23,26], the
gap is set to be 320 nm to make the 3dB bandwidth of the MRR less than 0.8 nm.

Fig.6 Coupling coefficients for two polarization states with different gaps

Three- dimensional FDTD method is used to analyze the filtering characteristics of the MRR with
symmetric coupling structure. The main parameters used in the simulation are listed in table 1.

Table 1 Main parameters used in simulation

Parameter
rh /nm
rw /nm
sh /nm
sv /nm

Gap /nm
R /μm
rw_i /nm
rw_o /nm

Value
160
150
100
100
320
3.7
160
140

The simulation results are shown in figure 7. As shown, the line shapes for TE and TM mode are different,
which is mainly caused by the different coupling coefficients for two polarization states. The resonant
wavelengths for TE mode are 1463.98 nm, 1495.18 nm, 1528.89 nm and 1564.29 nm respectively, and those
for TM mode are 1463.89 nm, 1495.20 nm, 1528.93 nm and 1564.86 nm respectively. The deviations of resonant

Fig.7 Response of the MRR simulated with three-dimensional FDTD method for TE and TM mode.

(a) At the through port; (b) at the drop port

4



53, 022302(2016) 激光与光电子学进展 www.opticsjournal.net

022302-

wavelengths for two polarization states are less than 0.1 nm in the region of 1463 nm to 1529 nm, which is
labeled as the polarization-independent working zone in figure 7. It means the polarization-independent
working bandwidth of the MRR is about 64 nm, which is large enough to cover the C-band. The deviation
tends to increase with the increase and decrease of wavelength, which is caused by the different dispersion
characteristics for TE and TM mode. The FSR of the MRR is about 35 nm, which is large enough to avoid
wavelength crosstalk in the dense wavelength division multiplexing (DWDM) systems.

At the through port, the 3 dB bandwidth at the resonant wavelength of about 1528 nm for TE mode is
about 0.64 nm and TM mode about 0.77 nm. The Q values are calculated about 2387 and 1984 for TE and
TM mode respectively:

Q = λ/Δλ3 dB . (1)

In equation (1), λ is the resonant wavelength, and Δλ3dB is the 3 dB bandwidth. The 3 dB bandwidths at the
drop port for TE and TM mode are larger than 0.8 nm, which is mainly caused by the bending loss in the ring.
The 3 dB bandwidth and Q value of the MRR can be optimized by adjusting the structure of SCSW or by
decreasing the bending loss in MRR[21].

3 Conclusion
The design and simulation of a polarization-independent MRR based on SCSW structure are described.

A single-mode SCSW can be polarization-insensitive if its structure is designed dedicated. The polarization-
independent working bandwidth of the MRR is about 64 nm, which is large enough to cover the C-band. The
polarization-independent working zone can be shifted to cover the C-band by optimization the structures
of SCSW and MRR. The FSR of the MRR is about 35 nm which is large enough to be used in the DWDM
systems.
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